Package: ctmva 1.4.0

ctmva: Continuous-Time Multivariate Analysis

Implements a basis function or functional data analysis framework for several techniques of multivariate analysis in continuous-time setting. Specifically, we introduced continuous-time analogues of several classical techniques of multivariate analysis, such as principal component analysis, canonical correlation analysis, Fisher linear discriminant analysis, K-means clustering, and so on. Details are in Biplab Paul, Philip T. Reiss and Erjia Cui (2023) "Continuous-time multivariate analysis" <doi:10.48550/arXiv.2307.09404>.

Authors:Biplab Paul [aut, cre], Philip Tzvi Reiss [aut]

ctmva_1.4.0.tar.gz
ctmva_1.4.0.zip(r-4.5)ctmva_1.4.0.zip(r-4.4)ctmva_1.4.0.zip(r-4.3)
ctmva_1.4.0.tgz(r-4.4-any)ctmva_1.4.0.tgz(r-4.3-any)
ctmva_1.4.0.tar.gz(r-4.5-noble)ctmva_1.4.0.tar.gz(r-4.4-noble)
ctmva_1.4.0.tgz(r-4.4-emscripten)ctmva_1.4.0.tgz(r-4.3-emscripten)
ctmva.pdf |ctmva.html
ctmva/json (API)

# Install 'ctmva' in R:
install.packages('ctmva', repos = c('https://biplab44.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

On CRAN:

This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.

1.00 score 192 downloads 14 exports 49 dependencies

Last updated 10 months agofrom:b42f35f028. Checks:OK: 7. Indexed: yes.

TargetResultDate
Doc / VignettesOKNov 03 2024
R-4.5-winOKNov 03 2024
R-4.5-linuxOKNov 03 2024
R-4.4-winOKNov 03 2024
R-4.4-macOKNov 03 2024
R-4.3-winOKNov 03 2024
R-4.3-macOKNov 03 2024

Exports:cca.ctcenter.ctcor.ctcov.ctinprod.centkmeans.ctlda.ctmeanbasispca.ctplot.kmeans.ctplot.lda.ctplot.silhouette.ctsilhouette.ctstandardize.ct

Dependencies:ashbitopscliclustercolorspacedeSolvefansifarverfdafdsFNNggplot2gluegtablehdrcdeisobandkernlabKernSmoothkslabelinglatticelifecyclelocfitmagrittrMASSMatrixmclustmgcvmulticoolmunsellmvtnormnlmepcaPPpillarpkgconfigpolynompracmaR6rainbowRColorBrewerRcppRCurlrlangscalestibbleutf8vctrsviridisLitewithr